DINAMIKANI STATISTIK O'RGANISH USULLARI
https://doi.org/10.5281/zenodo.14955865
Abstract
Ushbu ilmiy maqola dinamikani statistik o‘rganish usullarini tahlil qiladi. Dinamik tizimlarning vaqt davomida o‘zgarishlarini o‘rganish uchun qo‘llaniladigan asosiy statistik metodlar, shu jumladan, avtomatik regulyatsiya modellarini (ARMA, ARIMA), Markov jarayonlari, vaqt seriyalarini tahlil qilish, stoxastik differential tenglamalar (SDE) va Bayes metodlari ko‘rib chiqiladi. Maqolada, bu usullarni iqtisodiyot, biologiya, muhandislik va mashinani o‘rganish sohalarida amaliy qo‘llanishi va ularning tizimlar tahlilidagi ahamiyati muhokama qilinadi. Dinamik tizimlarning statistik o‘rganish metodologiyalari tizimlarning kelajakdagi holatlarini prognozlash, mavsumiy o‘zgarishlarni tahlil qilish va tasodifiylikni hisobga olishda muhim rol o‘ynaydi. Ushbu maqola, dinamik tizimlarni o‘rganish va ular bo‘yicha tahlillarni amalga oshirishda zamonaviy statistik usullarni joriy etishning ahamiyatini ko‘rsatadi.
References
Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day.
Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.
Kemeny, J. G., & Snell, J. L. (1960). Finite Markov Chains. D. Van Nostrand Company.
Oksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications. Springer.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data Analysis. CRC Press.
Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press.
Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples. Springer.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.