MULTIMODAL HISSIYOTLARNI ANIQLASHDA CHUQUR O'RGANISH MODELLARI UCHUN MA'LUMOTLAR TO'PLAMLARI VA KIRUVCHI MA'LUMOTLARNI QAYTA ISHLASH USULLARI
https://doi.org/10.5281/zenodo.17241308
Keywords:
Multimodal his-tuyg’u, early fusion, late fusion, hybrid fusionAbstract
His tuyg’ularni aniqlash bo‘yicha tadqiqotlarda dastlab tadqiqotchilar bir modalliklarni aniqlashga katta e’tibor qaratishdi. Nutq tuvushlaridan hissiyotlarni aniqlash, yuz ifodalalaridan hissiyotlarni aniqlash, matn mazmunidan hissiyotlarni aniqlash, tana tilinidan hissiyotlarni aniqlash bo‘yicha tajribalar olimlar orasida keng ommalashdi.
Downloads
References
Zong, Y., Lian, H., Chang, H., Lu, C., & Tang, C. (2022). Adapting Multiple Distributions for Bridging Emotions from Different Speech Corpora. Entropy, 24(9), 1250.
Valstar, M. F., Jiang, B., Mehu, M., Pantic, M., & Scherer, K. (2011, March). The first facial expression recognition and analysis challenge. In 2011 IEEE international conference on automatic face & gesture recognition (FG) (pp. 921-926). IEEE.
Wu, C. H., Chuang, Z. J., & Lin, Y. C. (2006). Emotion recognition from text using semantic labels and separable mixture models. ACM transactions on Asian language information processing (TALIP), 5(2), 165-183.
Reed, C. L., Moody, E. J., Mgrublian, K., Assaad, S., Schey, A., & McIntosh, D. N. (2020). Body Matters in Emotion: Restricted Body Movement and Posture Affect Expression and Recognition of Status-Related Emotions. Frontiers in Psychology, 11. doi:10.3389/fpsyg.2020.01961
Lian H, Lu C, Li S, Zhao Y, Tang C, Zong Y. A Survey of Deep Learning-Based Multimodal Emotion Recognition: Speech, Text, and Face. Entropy. 2023; 25(10):1440. https://doi.org/10.3390/e25101440
Zeng, J., Liu, T., & Zhou, J. (2022, July). Tag-assisted multimodal sentiment analysis under uncertain missing modalities. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1545-1554).
Liu F, Chen J, Tan W, Cai C. A Multi-Modal Fusion Method Based on Higher-Order Orthogonal Iteration Decomposition. Entropy. 2021; 23(10):1349. https://doi.org/10.3390/e23101349
Kalateh, Sepideh & Estrada-Jimenez, Luis A. & Nikghadam Hojjati, Sanaz & Barata, J.. (2024). A Systematic Review on Multimodal Emotion Recognition: Building Blocks, Current State, Applications, and Challenges. IEEE Access. PP. 1-1. 10.1109/ACCESS.2024.3430850.
Lian H, Lu C, Li S, Zhao Y, Tang C, Zong Y. A Survey of Deep Learning-Based Multimodal Emotion Recognition: Speech, Text, and Face. Entropy. 2023; 25(10):1440. https://doi.org/10.3390/e25101440
Udahemuka G, Djouani K, Kurien AM. Multimodal Emotion Recognition Using Visual, Vocal and Physiological Signals: A Review. Applied Sciences. 2024; 14(17):8071. https://doi.org/10.3390/app14178071
Busso, C., Bulut, M., Lee, C. C., Kazemzadeh, A., Mower, E., Kim, S., ... & Narayanan, S. S. (2008). IEMOCAP: Interactive emotional dyadic motion capture database. Language resources and evaluation, 42, 335-359.
Morency, L. P., Mihalcea, R., & Doshi, P. (2011, November). Towards multimodal sentiment analysis: Harvesting opinions from the web. In Proceedings of the 13th international conference on multimodal interfaces (pp. 169-176).
Wöllmer, M., Weninger, F., Knaup, T., Schuller, B., Sun, C., Sagae, K., & Morency, L. P. (2013). Youtube movie reviews: Sentiment analysis in an audio-visual context. IEEE Intelligent Systems, 28(3), 46-53.
Zadeh, A., Zellers, R., Pincus, E., & Morency, L. P. (2016). Mosi: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. arXiv preprint arXiv:1606.06259.
Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., & Mihalcea, R. (2019). MELD: a multimodal multi-party dataset for emotion recognition in conversations. In proceedings of the 57th annual meeting of the association for computational linguistics. Florence: Association for Computational Linguistics.
Datcu, D. and Rothkrantz, L.J.M. (2015). Semantic Audiovisual Data Fusion for Automatic Emotion Recognition. In Emotion Recognition. pages 411–435. John Wiley & Sons, Inc., 2015. https://doi.org/10.1002/9781118910566.ch16.
Nguyen, T. D. (2020). Multimodal emotion recognition using deep learning techniques (Queensland University of Technology). doi:10.5204/thesis.eprints.180753
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.