MOBIL ILOVALARDA BASHORATLI MODELLAR SAMARADORLIGINI BAHOLASH
https://doi.org/10.5281/zenodo.17262872
Keywords:
Mobil ilovalar, bashoratli modellar, sun’iy intellekt, Machine Learning, Deep Learning, CNN, LSTM, Edge Computing, samaradorlik, foydalanuvchi tajribasiAbstract
Ushbu maqolada mobil ilovalarda qo‘llanilayotgan bashoratli modellar samaradorligi tahlil qilindi. Sun’iy intellekt texnologiyalarining (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision) mobil ilovalarda qo‘llanilish sohasi, ularning foydalanuvchi tajribasini yaxshilash va tizim samaradorligini oshirishdagi o‘rni yoritildi. CNN, RNN, Random Forest, SVM va LSTM kabi algoritmlar samaradorligi aniqlik, precision, recall, F1-score, kechikish va energiya samaradorligi kabi mezonlar asosida baholandi. Tadqiqot natijalariga ko‘ra, bashoratli modellar foydalanuvchilarni ushlab qolish, resurslardan tejamkor foydalanish va ilovalarning tezkorligini oshirishda yuqori samaradorlikka ega ekani aniqlandi. Shuningdek, mobil qurilmalar imkoniyatlarini inobatga olgan holda Edge Computing va TensorFlow Lite texnologiyalarining qo‘llanilishi kechikishni kamaytirishi isbotlandi.
Downloads
References
Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2018). A survey on deep learning for big data. Information Fusion, 42, 146–157.
Rakhmonkulov Feruz Pardaboyevich, Mahkamov Shohruh Sarvar ugli, Jizzax, Uzbekistan. (2025). NEXT-GENERATION NETWORK SCREENS (NGFW) AND THEIR ROLE IN ENSURING SECURITY. Zenodo. https://doi.org/10.5281/zenodo.14954995
Mahkamov, S., Aynakulov, T., & Baratov, J. (2024). ANDROIDDA MODEL VIEW PRESENTER (MVP) ARXITEKTURASI. International Journal of scientific and Applied Research, 1(3), 199-202.
Sarvar o’g’li, M. S. (2024). MODEL VIEW PRESENTER (MVP) ARXITEKTURASI. Ta'limning zamonaviy transformatsiyasi, 8(4), 186-191.
Махкамов, Ш. С. (2024). Инновационных технологий в систему государственного управления как фактор её развития и совершенствования.
Mahkamov, S. (2024). JAVA MVC ARXITEKTURASI: MODULYARLIK, XAVFSIZLIK VA PERFORMANCE MASALALARI. SAMBHRAM XABARNOMASI, 1(1), 94-97.
Mahkamov, S., Dandu, J., Aynakulov, T., & Saitqulov, S. (2024). METHODS AND ARGUMENTS: HANDLING PARAMETERS IN JAVA. SAMBHRAM XABARNOMASI, 1(1), 97-99.
Mahkamov, S. (2024). INNOVATSION TEXNOLOGIYALARIDAN DARS MASHG ‘ULOTLARIDA FOYDALANIB DARS SAMARADORLIGINI OSHIRISH. SAMBHRAM XABARNOMASI, 1(1), 718-720.
Aynakulov T. et al. TASVIRLARNI TANIB OLISHNING DOLZARBLIGI HAMDA TASVIRLARGA RAQAMLI ISHLOV BERISH //International Journal of scientific and Applied Research. – 2024. – Т. 1. – №. 3. – С. 123-126.
Aynakulov T. MOBIL HISOBLASH PLATFORMASIGA ASOSLANGAN AQLLI BINAURAL ESHITISH APPARATI ARXITEKTURASI //International Journal of scientific and Applied Research. – 2024. – Т. 1. – №. 3. – С. 119-122.
Google Developers. (2023). TensorFlow Lite documentation. https://www.tensorflow.org/lite
Apple Developer. (2023). Core ML: Integrating machine learning models into apps. https://developer.apple.com/machine-learning/
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.